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More than minimizing reconstruction error
 More interpretable embedding



What is good embedding?

* An embedding should represent the object.
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Beyond Reconstruction . .
Ly = mdgn Lp

How to evaluate an encoder?
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Beyond Reconstruction

How to evaluate an encoder?
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[ Train ¢ to minimize L,

Beyond Reconstruction . .
Ly = mq;n Lp

How to evaluate an encoder?

Small L, » The embeddings
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Typical auto-encoder is a special case
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A document is a
sequence of sentences.

Sequential Data

previous
Skip thought current g Bk e s
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https://papers.nips.cc/paper/5950-skip-thought-vectors.pdf
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https://arxiv.org/pdf/1803.02893.pdf



Sequential Data

e Contrastive Predictive Coding (CPC)
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https://arxiv.org/pdf/1807.03748.pdf
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 More than minimizing reconstruction error
More interpretable embedding




Feature Disentangle

Source: https://www.dreamstime.com/illustration/disentangle.html

* An object contains multiple aspect information
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Include phonetic information,
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input sentence \ reconstructed
Include syntactic information,

semantic information, etc.




Feature Disentangle
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Feature Disentangle
- Voice Conversion
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Feature Disentangle
- Voice Conversion
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Feature Disentangle
- Voice Conversion

* The same sentence has different impact when it is
said by different people.

Do you want to
study a PhD?

?& Student
%& Student

Do you want to

FriEgEx =" {’ study a PhD?

(Aragaki Yui) el
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Feature Disentangle
- Adversarial Training

Learn to fool the Speaker
. — e > T
speaker classifier Classifier
A
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How are you? £ How are you?

Speaker classifier and encoder are learned iteratively



Feature Disentangle
- Designed Network Architecture
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Feature Disentangle
- Designed Network Architecture
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LAl = adaptive instance normalization

(only influence global information)



Feature Disentangle - Adversarial Training

Target Speaker EI

Source Speaker Source to Target
(Never seen during training!)

(] me <]
EII\/Ie EI

Me

Thanks Ju-chieh Chou for providing the results.
https://jjery2243542.github.io/voice_conversion_demo/



Discrete Representation

: _ _ non differentiable
 Easier to interpret or clustering https://arxiv.org/pdf/16
11.01144.pdf

One-hot
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Discrete Representation

https://arxiv.org/abs/1711.00937
* \Vector Quantized Variational Auto-encoder (VQVAE)
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Codebook Compute similarity

(a set of vectors)
Learn from data

The most similar one
is the input of decoder.
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For speech, the codebook represents phonetic information
https://arxiv.org/pdf/1901.08810.pdf



Sequence as Embedding

https://arxiv.org/abs/1810.02851 OnIy need a lot

of documents to
train the model & 2%

This is a seq2seq2seq auto-encoder.

Using a sequence of words as latent representation.

not readable ...

word
document sequence document




Sequence as Embedding

» %@ » Real or not
E E'% Discriminator

I

Human written summaries

Let Discriminator considers

my output as real

4

word

document sequence document
&§ Summary? 'S: .

Seq2seq SquSeq
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Sequence as Embedding

* Document: AR no 5 K EL3(E [ 5 gn s | [ BB TR EE
SR, 5 R B E 2 Y N EE Fa A SR

* Summary:.

 Human: B AHI a0 B 13 B8] % 5 S B 7 i
* Unsupervised SR F i 150 ES 5 BB 2 F NI EE i 2
* Document: Ej%lé% ] EMUL T T B g5 KR — L4
AR BB R b, F _%E‘FE%E%E FriEd ENEE
T35, R Jkt H AR E B D IR ...
* Summary:
* Human:— UL AR BE e pr s P2 0
* Unsupervised: B Z: G B E X R BEIHE @ HE5 N
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Sequence as Embedding

+ Document 5 LLFET/ALR427 1 38, 1S TE PG 2 AT 25
I A {8 = 2 H 2R e v, A /KO 2 s S 2 T, 526 H Ay 1k
/D H60 ATEA:,10025 A FHE ...
* Summary:
e Human:EIE7K £ %R 60 AFET™
* Unsupervised:FIJEFTH7KZ B E IR R
* Document: "L e AT T BT Ry HAREHED D ASE AN T HTH
TE— RS EE e, N R AIAGA T ~ N EEEEREE] ...
* Summary:.
* Human: & R EEERrE) N A RS
* Unsupervised: & HESEERSE AL fE i fm 0 2 A E 7 e
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Tree as Embedding

4

Inference Model

th’i(z|$)

Reconstruction Model
po(x|z)

...

/

Sort my_list in descending order

https://arxiv.org/abs/1806.07832
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The hungry cat meows hungry - cat

Inference Network ¢s(z|x)  Generative Model ps(x,2)

https://arxiv.org/abs/1904.03746



Concluding Remarks

As close as possible
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 More than minimizing reconstruction error
* Using Discriminator
 Sequential Data

* More interpretable embedding

 Feature Disentangle
* Discrete and Structured




